八年级数学反比例函数知识点
上学的时候,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是学习的重点。为了帮助大家掌握重要知识点,以下是小编收集整理的八年级数学反比例函数知识点,欢迎阅读,希望大家能够喜欢。
1、定义:形如y= (k为常数,k≠0)的函数称为反比例函数。
2、其他形式xy=k (k为常数,k≠0)都是。
3、图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和y=-x。对称中心是:原点
3、性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4、|k|的几何意义:表示反比例函数图像上的点向两坐标轴
所作的垂线段与两坐标轴围成的矩形的面积。
初中数学同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n=am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
初中数学旋转的相关知识点
1、旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角。如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。
2、旋转的性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前后的图形全等。
3、作图:
在画旋转图形时,要把握旋转中心与旋转角这两个元素。确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。
作图的步骤:
(1)连接图形中的每一个关键点与旋转中心;
(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);
(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;
(4)连接所得到的各对应点。
形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数表达式
x是自变量,y是x的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1) (即:y等于x的负一次方,此处x必须为一次方)
y=k/x(k为常数且k≠0,x≠0)
若y=k/nx此时比例系数为:k/n
自变量的取值范围 ① 在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。
解析式 y=k/x 其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,即 {x|x≠0,x∈R}。下面是一些常见的形式:
y=k/x=k·1/x
xy=k
y=k·x^(-1)
y=kx(k为常数(k≠0),x不等于0)
反比例函数图象
反比例函数的图像属于以原点为对称中心的.中心对称的双曲线(hyperbola),
知识拓展:反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
初中数学幂的乘方知识点
1、幂的乘方是指几个相同的'幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。
3、此法则也可以逆用,即:amn=(am)n=(an)m。
初中数学有理数的运算知识点
1.加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
2.减法:减去一个数,等于加上这个数的相反数。
3.乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
4.除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
5.乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
6.混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
文档为doc格式