首页 > 学科考试 > 数学

初三数学上册知识点

时间:2024-07-18 10:45:44
初三数学上册知识点

初三数学上册知识点

在平平淡淡的学习中,是不是听到知识点,就立刻清醒了?知识点就是一些常考的内容,或者考试经常出题的地方。你知道哪些知识点是真正对我们有帮助的吗?下面是小编整理的初三数学上册知识点,仅供参考,大家一起来看看吧。

初三数学上册知识点1

(三角形中位线的定理)

三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

(平行四边形的性质)

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分。

(矩形的性质)

①矩形具有平行四边形的一切性质;

②矩形的四个角都是直角;

③矩形的对角线相等。

正方形的判定与性质

1、判定方法:

1邻边相等的矩形;

2邻边垂直的菱形;

3对角线垂直的矩形;

4对角线相等的菱形;

2、性质:

1边:四边相等,对边平行;

2角:四个角都相等都是直角,邻角互补;

3对角线互相平分、垂直、相等,且每长对角线平分一组内角。

等腰三角形的判定定理

(等腰三角形的判定方法)

1、有两条边相等的三角形是等腰三角形。

2、判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

标准差与方差

极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值—最小值。

计算器——求标准差与方差的一般步骤:

1、打开计算器,按“ON”键,按“MODE”“2”进入统计SD状态。

2、在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

3、输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

4、当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

5、标准差的平方就是方差。

初三数学上册知识点2

1、 必然事件、不可能事件、随机事件的区别

2、概率

一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

注意:(1)概率是随机事件发生的可能性的大小的数量反映.

(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.

3、求概率的方法

(1)用列举法求概率(列表法、画树形图法)

(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

初三数学上册知识点3

一、等腰三角形

1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)

3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)

4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴

3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形

等边三角形

1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

二、直角三角形全等

1、直角三角形全等的判定有5种:

(1)、两角及其夹边对应相等的两个三角形全等;(asa)

(2)、两边及其夹角对应相等的两个三角形全等;(sas)

(3)、三边对应相等的两个三角形全等;(sss)

(4)、两角及其中一角的对边对应相等的两个三角形全等;(aas)

(5)、斜边及一条直角边对应相等的两个三角形全等;(hl)

2、在直角三角形中,如有一个内角等于30,那么它所对的直角边等于斜边的一半

3、在直角三角形中,斜边上的中线等于斜边的一半

4垂直平分线:垂直于一条线段并且平分这条线段的直线。

性质:线段垂直平分线上的点到这一条线段两个端点距离相等。

判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。

6、角平分线上的点到角两边的距离相等。

7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

8、角平分线是到角的两边距离相等的所有点的集合。

9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

10、三角形三条中线交于一点,交点为三角形的重心。

11、三角形三条高线交于一点,交点为三角形的垂心。

三、平行四边的定义

1、定义:两线对边分别平行的四边形叫做平行四边形,

2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。

3、判定:(1)一组对边平行且相等的四边形是平行四边形。

(2)两条对角线互相平分的四边形是平行四边形。

(3)两组对边分别相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)一组对边平行,一组对角相等的四边形是平行四边形。

(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。

两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。

(2)一组对边相等,一组对角相等的四边形是平行四边形。

四、矩形

1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。

(4)矩形是轴对称图形,有两条对称轴。

3、判定:(1)有三个角是直角的四边形是矩形。

(2)对角线相等的平行四边形是矩形。

五、菱形

1、定义:一组邻边相等的平行四边形叫做菱形。

2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。

3、判定:(1)四条边都相等的四边形是菱形。

(2)对角线互相垂直的平行四边形是菱形。

(3)一条对角线平分一组对角的平行四边形是菱形。

六、正方形

1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2、性质:正方形具有平行四边形、矩形、菱形的一切性质。

3、判定:(1)有一个内角是直角的菱形是正方形;

(2)有一组邻边相等的矩形是正方形;

(3)对角线相等的菱形是正方形;

(4)对角线互相垂直的矩形是正方形。

七、梯形定义:

一组对边平行且另一组对边不平行的四边形叫做梯形。

八、等腰梯形

1、定义:两条腰相等的梯形叫做等腰梯形。

2、性质:等腰梯形同一底上的两个内角相等,对角线相等。

3、同一底上的两个内角相等的梯形是等腰梯形。

九、三角形的中位线

定义:连接三角形两边中点的线段。

性质:平行于第三边,并且等于第三边的一半。

十、梯形的中位线

定义:连接梯形两腰中点的线段。

性质:平行于两底,并且等于两底和的一半。

初三数学上册知识点4

知识点一: 二次根式的概念

形如a(a0)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),

(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。

知识点二:取值范围

1. 二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。

知识点三:二次根式a(a0)的非负性

a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。

注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。

知识点四:二次根式(a) 的性质

(a)2=a(a0)

文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则

a=(a)2,如:2=(2)2,1/2=(1/2)2.

知识点五:二次根式的性质

a2=|a|

文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:

1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a (a若a是负数,则等于a的相反数-a,即a2=|a|=-a (a﹤0);

2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;

3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

知识点六:(a)2与a2的异同点

1、不同点:(a)2与a2表示的意义是不同的,(a)2表示一个非负数a的算术平方根的平方,而a2表示一个实数a的平方的算术平方根;在(a)2中,而a2中a可以是正实数,0,负实数。但(a)2与a2都是非负数,即(a)20,a20。因而它的运算的结果是有差别的,(a)2=a(a0) ,而a2=|a|。

2、相同点:当被开方数都是非负数,即a0时,(a)2=a﹤0时,(a)2无意义,而a2=|a|=-a.

初三数学上册知识点5

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

初三数学上册知识点6

第21章二次根式

1、二次根式:一般地,式子叫做二次根式。

注意:

(1)若这个条件不成立,则不是二次根式;

(2)是一个重要的非负数,即; ≥0。

2、重要公式:

3、积的算术平方根:

积的算术平方根等于积中各因式的算术平方根的积;

4、二次根式的乘法法则:。

5、二次根式比较大小的方法:

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小。

6、商的算术平方根:,

商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

7、二次根式的除法法则:

分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

8、最简二次根式:

(1)满足下列两个条件的二次根式,叫做最简二次根式,

①被开方数的因数是整数,因式是整式,

②被开方数中不含能开的尽的因数或因式;

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

(4)二次根式计算的最后结果必须化为最简二次根式。

9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

10、二次根式的混合运算:

(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

第22章一元二次方程

1、一元二次方程的一般形式:

a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

3。一元二次方程根的判别式:当ax2+bx+c=0

(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

Δ>0 <=>有两个不等的实根;

Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根;