苏教版六年级数学上册知识点总结
总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能够给人努力工作的动力,因此,让我们写一份总结吧。我们该怎么去写总结呢?以下是小编精心整理的苏教版六年级数学上册知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
苏教版六年级数学上册知识点总结1方程以及列方程解应用题1、形如ax±b=c方程的解法
【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】2、形如ax±bx=c方程的解法
【解方程时,第一步要把x前面的序数相加或相减,再
在两边同时除以同一个数】
3、列方程解决实际问题
基本步骤:审清题意→找准等量关系→设未知数→列方程→解方程→检验→作答基本类型:比较大小关系;总数和部分数关系;和倍与差倍关系;行程问题中的关系;
涉及图形的周长、面积的关系等等。
长方体和正方体1、长方体和正方体的特征形体面顶点棱12相对的棱条长度相等关系长方体6个至少4个面相对面8个是长方形完全相同正方体6个正方形6个面8个完全相同正方体是特殊1212条长度的长方体条都相等2、表面积概念及计算
【长方体或正方体6个面的总面积,叫做它们的表面积】算法:长方体(长×宽+长×高+宽×高)×2(ab+ah+bh)×2
正方体棱长×棱长×6a×a×6=6
a2
注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。3、体积概念及计算体积(容积)定义物体所占空间的大小叫做它们的体积;容器所能容纳其它物体的体积叫做它的容积。分数乘法1、
分数乘法算式的意义:比如3×
形体长方体正方体体积(容积)体积单位计算方法V=abhV=a3进率V=Sh33m1=1000dm立方米立方分米33dmcm1=1000立方厘米1L=1000mL=1dm333表示3个相加的和是多少,也可以表示3的553是多少?
注:【求一个数的几分之几用乘法解答】2、分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,
日期:________________姓名:_________________重要资料请勿外传
最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】3、分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约
分成最简分数。
4、分数连乘:通过几个分数的分子与分母直接约分再进行计算。倒数的认识1、乘积是1的两个数互为倒数。2、求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。【整数是
分母为1的分数】
3、1的倒数是1,0没有倒数。4、假分数的倒数都小于或等于1(或者说不大于1);
真分数的倒数都大于1。
分数除法1、分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。2、分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇到除以一个数,
把它改写成乘这个数的倒数来计算。
【转化成分数的连乘来计算】
3、除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被
除数。
4、分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方
法来解,也可以直接用除法。
注:在单位换算中,要弄清需要换算的单位之间的进率是多少。
认识比1、比的意义:比表示两个数相除的关系。
2、
比与分数、除法的关系:a:b=a÷b=
a(b≠0)b区别后项比值除数商关系运算比相互关系前项比号(:)分数分子分数线(-)分母分数值数除法被除数除号(÷)3、比值:比的前项除以比的后项,所得的商就叫比值。
注:比值是一个数,可以是整数、分数、小数,不带单位名称。
4、比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值
不变。
5、最简整数比:比的前项和后项是互质数。也就是比的前项和后项除了1意外
没有其它公因数。
6、化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,
再除以它们的最大公因数。
注:化简比和求比值是不同的两个概念
【意义不同,方法不同,结果不同】
苏教版六年级数学上册知识点总结2第一单元略
第二单元长方体和正方体
1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。
2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
3、长方体的特征:面有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱有12条棱,相对的棱长度相等;顶点有8个顶点。
4、正方体的特征:面有六个面,都是正方形,所有的面完全相同;棱有12条棱,所有的棱长度相等;顶点有8个顶点。
5、正方体也是一种特殊的长方体。
6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。
7、长方体(或正方体)的六个面的总面积,叫做它的表面积。
8、长方体的表面积=(长×宽+宽×高+高×长)×2
正方体的表面积=棱长×棱长×6。
9、物体所占空间的大小叫做物体的体积。
10、容器所能容纳物体的体积,叫做这个容器的容积。
11、常用的体积单位有立方厘米、立方分米、立方米。1立方米=1000立方分米,1立方分米=1000立方厘米。
12、计量液体的体积,常用升和毫升作单位。1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。
13、长方体的体积=长×宽×高V=abh
14、正方体的体积=棱长×棱长×棱长V=a×a×a
15、长方体(或正方体)的体积=底面积×高=横截面×长V=Sh
16、1=12=83=274=645=1256=27=3438=5129=72910=1000
17、每相邻两个长度单位(除千米外)的进率都是10,每相邻两个面积单位之间的进率都是100,每相邻两个体积单位之间的进率都是1000。
18、正方体的棱长扩大n倍,表面积会扩大n的平方倍,体积会扩大n的立方倍。
第三单元分数乘法
1、分数乘整数的意义与整数乘法的意义相同,是 ……此处隐藏4187个字……长/竹竿影长=大树高/大树影长
第六单元分数四则运算
分数四则运算和整数一样:先算乘除,后算加减,有括号的先算括号里的。一、定律
(1)加法交换律:交换两个加数的位置,和不变:a+b=b+a
(2)加法结合律:三个数相加,先用前两个数相加,再加上第三个数,或者先用后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
(3)乘法交换律:交换两个乘数的位置,积不变。a×b=b×a
(4)乘法结合律:三个数相乘,先用前两个数相乘,再乘以第三个数,或者先用后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)(5)乘法分配律:ac+bc=(a+b)cac-bc=(a-b)c二、简便运算:(一)加法
三个数相加,先找出加数中分母相同的加数;运用加法交换律或结合律把这两个加数移到一起,在这个算式中先算这两个数的和,再用这两个的和加上另一个数。(二)减法
减法的性质:一个数连续减去几个数,等于减去这几个数的和。
即:a-b-c=a-(b+c)或a-b+c=a-(b-c);a-(b+c)=a-b-c或a-(b-c)=a-b+c
1、在分数四则混合运算中,如果只有加减法,并且在括号里面和外面有分母相同的分数,则利用减法的性质进行去括号计算。即:a-(b+c)=a-b-ca-(b-c)=a-b+c
2、在分数四则混合运算中,如果只有加减法,被减数外的两个分数是分母相同的分数,则利用减法的性质进行加括号计算即:a-b-c=a-(b+c)或a-b+c=a-(b-c)(四)乘、除法
1、在四则混合运算中,先观察题中是否有相同的分数。如果有且相同的分数分布在加减号的两侧,则可以根据乘法分配律来简便计算。即:ac+bc=(a+b)cac-bc=(a-b)c2、分数除法:除以一个数等于乘以这个数的倒数。
3、除法的性质:一个数连续除以几个数,等于除以这几个数的积。
即:a÷b÷c=a÷(b×c)或a÷b×c=a÷(b÷c);a÷(b×c)=a÷b÷c或a÷(b÷c)=a÷b×c五、解决实际问题
已知A和B是A的几分之几,求B?A×几分之几=B
已知A和B比A多几分之几,求B?A+A×几分之几=B
已知A和B比A少几分之几,求B?
A×几分之几=B
探索与实践结论:把一个长方形的长和宽分别增加1/2,即长和宽变为原来的3/2,现在的面积变为原来的9/4,即为:现在面积:原来面积的=现在长:原来长=现在宽:原来宽注:在计算的过程中,根据实际情况确定使用的简便方法。
第七单元:解决问题的策略
一、替换的策略
1、根据题目意思,写出等量关系。2、把相等的量互换。3、根据题意列方程解答。
二、假设的策略(鸡兔同笼问题及延伸题)例:(大船坐的人数×总船数-总人数)÷(大船坐的人数-小船坐的人数)=小船数(总人数-小船坐的人数×总船数)÷(大船坐的人数-小船坐的人数)=大船数假设全部为其中的一种,用假设的这种×总头数和总脚数作比较谁大谁作被减数,再除以两种脚之差,所求出的为另一种的只数。
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
(5)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元。它的解法显然可套用上述公式。)
第八单元:可能性
求摸到某种球的可能是几分之几?
这种球的个数÷总个数=这种球的个数/总个数
第九单元、认识百分数
1、百分数:表示一个数是另一个数的百分之几的数叫百分数,又叫百分比或百分率。通常在原来的分子后面加“%”来表示:如30/100可以写成30%注:在用%号表示百分数中,后面带单位的百分之几不能用%表示。2、百分数与小数的互化(1)、小数化为百分数:一位小数写成十分之几,分子分母同时扩大10倍;两位小数写成百分之几;三位小数写成千分之几,分子分母同时缩小10倍……。(或把小数的小数点向右移动两位,后面加上百分号)
(2)百分数化为小数:把百分数的分子分母同时缩小100倍(即把百分数的分子小数点向左移动两位)
3、分数与小数的互化
(1)分数化为小数:分数的分子除以分母,结果保留三位小数
(2)小数化为分数:一位小数写成十分之几;两位小数写成百分之几;三位小数写成千分之几;然后约成最简分数。4、百分数与分数的互化(1)分数化为百分数:
A:分母是100的因数或倍数,直接进行通分或约分把分母化为100。
B:分母不是100的因数或倍数,用分子除以分母,所得结果保留三位小数,再根据小数化百分数的方法把这个小数化为百分数。(2)百分数化分数:
A:分子为整数,直接进行约分,约成最简分数。
B:分子为小数,先把百分数扩大相应的倍数,化成分子为整数的分数,再进行约分,约成最简分数。
5、求一个数是另一个数的百分之几?
一个数÷另一个数×100%6、出勤率=出勤人数÷总人数×100%缺勤率=缺勤人数÷总人数×100%发芽率=发芽种子数÷总种子数×100%成活率=成活棵树÷总种植棵树×100%
文档为doc格式